
Jain, Gea paper summary

Mackenzie Norman
mnor2@pdx.edu

February 1, 2025

1 Algorithm details and rough implementation
vision

Since the paper is paywalled (why a paper from the mid 90’s is paywalled is
beyond me) I will attempt to quickly summarize the operators and how a 1d
array is used to represent a chromosome.

1.1 Genomic Representation

The design space is initially discretized into a finite number of NxN cells. The
paper recommends setting N to the LCM of the lengths of the sides of the
chips. In my experience, with a more modern machine it is feasible to discretize
the space to even smaller units. (In the real world PCB’s are often designed
with a grid that components snap to, ideally the units of this grid would be
the discretization, but it can truly be arbitrary). With the grid discretized, the
space a chip takes up is represented by a number on a list.

0 0 0 0 0 0
0 2 0 1 0 0
0 2 0 1 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

Table 1: Discretized Layout

This is then flattened to a one-dimensional array (another point of improve-
ment may be using a 2 dimensional array)

[0,0,0,0,0,0,0,2,0,1,0,0,0,2,0,1,0,0,0,3,3,3,0,0,0,3,3,3,0,0,0,3,3,3,0,0]

Figure 1: Flattened Array

1



1.2 Genetic Operators

Because of the problem, it is rightly noted that using traditional mutation and
crossover operators would often times result in unfeasible or impossible place-
ments. Additionally a new operator is suggested: Compaction.

1.2.1 Mutation

The mutation operator has three different options. The first begins with select-
ing a component from a parent chromosome, removing and randomly selecting
a new position in the chromosome where it can be placed. (Note can is the
operative phrase here since it is possible there are no locations for it to be
placed.)

0 0 0 0 0 0
0 2 0 1 0 0
0 2 0 1 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

0 0 0 0 0 0
0 2 0 0 0 0
0 2 0 0 0 0
0 3 3 3 1 0
0 3 3 3 1 0
0 3 3 3 0 0

Figure 2: Move Mutation operator

The second mutation swaps 2 components. If either component cannot has
overlap/out of bounds issues. these are attempted to remedied using a rotation.

0 0 0 0 0 0
0 2 0 1 0 0
0 2 0 1 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

0 0 0 0 0 0
0 1 0 2 0 0
0 1 0 2 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

Figure 3: Swap Mutation operator

Third, a component is rotated at random. (In this algorithm, we simplify
the problem by only allowing 90, 180,270 degree rotations.)

With all three mutations, if a chip does not “fit” then it is first rotated, then
shifted to nearby cells, and finally moved to a random location.

2



0 0 0 0 0 0
0 2 0 1 0 0
0 2 0 1 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

0 0 0 0 0 0
0 2 1 1 0 0
0 2 0 0 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

Figure 4: Rotation Mutation operator

1.2.2 Crossover

The crossover operator is relatively simple. Two parents are selected A and
B. A rectangular region of random size is selected, and expanded to ensure no
components are cut off, then in the child, the components from parent A are
first placed, then all remaining components that fit from parent B are placed.
The ones that do not fit are first checked to see if their locations in parent A
would be feasible and if not, a random location is selected. Parents A and B
are then swapped for child 2.

0 0 0 0 0 0
0 2 0 0 0 0
0 2 4 4 0 0
0 3 3 3 1 0
0 3 3 3 1 0
0 3 3 3 0 0

Parent A

0 0 0 0 0 2
0 0 1 1 0 2
0 4 4 0 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

+
Parent B

0 0 0 0 0 0
0 2 1 1 0 0
0 2 4 4 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

Child A

0 0 0 0 0 2
0 0 1 1 0 2
0 4 4 0 0 0
0 3 3 3 0 0
0 3 3 3 0 0
0 3 3 3 0 0

Child B

Figure 5: Crossover operator

3



1.2.3 Compaction

No details are given on the specific implementation of this operator. In my
wildest dreams I would implement this with an FP approach that was encoded in
the genome. A naive implementation of this is find the center of the placement,
move components towards that going component-wise from the center out.

1.2.4 Evaluation

The evaluation is a normalized function of the three heuristics described in the
intro of section 2. Plus any other penalty functions. this is described in (1) as

f = f1 + f2 + P ∗ f3 (1)

with f1 being placement area, f2 as net length, f3 being all other penalty func-
tions.

1.2.5 Selection

The paper recommends two selection methods both stemming from Goldberg.
An “Expected Value(EV)” Plan and the “Elitist” plan. They differ in that the
EV plan uses the function to determine how many reproductions of an individual
are in the next generation while in the Elitist plan the fitter individuals will
persist onto the next generation.

4


